Papers
Topics
Authors
Recent
2000 character limit reached

A GRU-based Encoder-Decoder Approach with Attention for Online Handwritten Mathematical Expression Recognition (1712.03991v1)

Published 4 Dec 2017 in cs.CV

Abstract: In this study, we present a novel end-to-end approach based on the encoder-decoder framework with the attention mechanism for online handwritten mathematical expression recognition (OHMER). First, the input two-dimensional ink trajectory information of handwritten expression is encoded via the gated recurrent unit based recurrent neural network (GRU-RNN). Then the decoder is also implemented by the GRU-RNN with a coverage-based attention model. The proposed approach can simultaneously accomplish the symbol recognition and structural analysis to output a character sequence in LaTeX format. Validated on the CROHME 2014 competition task, our approach significantly outperforms the state-of-the-art with an expression recognition accuracy of 52.43% by only using the official training dataset. Furthermore, the alignments between the input trajectories of handwritten expressions and the output LaTeX sequences are visualized by the attention mechanism to show the effectiveness of the proposed method.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.