Papers
Topics
Authors
Recent
2000 character limit reached

Size, Cost, and Capacity: A Semantic Technique for Hard Random QBFs (1712.03626v4)

Published 11 Dec 2017 in cs.LO

Abstract: As a natural extension of the SAT problem, an array of proof systems for quantified Boolean formulas (QBF) have been proposed, many of which extend a propositional proof system to handle universal quantification. By formalising the construction of the QBF proof system obtained from a propositional proof system by adding universal reduction (Beyersdorff, Bonacina & Chew, ITCS 16), we present a new technique for proving proof-size lower bounds in these systems. The technique relies only on two semantic measures: the cost of a QBF, and the capacity of a proof. By examining the capacity of proofs in several QBF systems, we are able to use the technique to obtain lower bounds based on cost alone. As applications of the technique, we first prove exponential lower bounds for a new family of simple QBFs representing equality. The main application is in proving exponential lower bounds with high probability for a class of randomly generated QBFs, the firstgenuine' lower bounds of this kind, which apply to the QBF analogues of resolution, Cutting Planes, and Polynomial Calculus. Finally, we employ the technique to give a simple proof of hardness for the prominent formulas of Kleine B\"uning, Karpinski and Fl\"ogel.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.