Emergent Mind

Logarithmic divergences from optimal transport and Rényi geometry

(1712.03610)
Published Dec 10, 2017 in math.PR , cs.IT , math.IT , math.ST , and stat.TH

Abstract

Divergences, also known as contrast functions, are distance-like quantities defined on manifolds of non-negative or probability measures. Using the duality in optimal transport, we introduce and study the one-parameter family of $L{(\pm \alpha)}$-divergences. It includes the Bregman divergence corresponding to the Euclidean quadratic cost, and the $L$-divergence introduced by Pal and the author in connection with portfolio theory and a logarithmic cost function. They admit natural generalizations of exponential family that are closely related to the $\alpha$-family and $q$-exponential family. In particular, the $L{(\pm \alpha)}$-divergences of the corresponding potential functions are R\'{e}nyi divergences. Using this unified framework we prove that the induced geometries are dually projectively flat with constant sectional curvatures, and a generalized Pythagorean theorem holds true. Conversely, we show that if a statistical manifold is dually projectively flat with constant curvature $\pm \alpha$ with $\alpha > 0$, then it is locally induced by an $L{(\mp \alpha)}$-divergence. We define in this context a canonical divergence which extends the one for dually flat manifolds.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.