Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dispersion processes (1712.03389v1)

Published 9 Dec 2017 in cs.DM and math.CO

Abstract: We study a synchronous dispersion process in which $M$ particles are initially placed at a distinguished origin vertex of a graph $G$. At each time step, at each vertex $v$ occupied by more than one particle at the beginning of this step, each of these particles moves to a neighbour of $v$ chosen independently and uniformly at random. The dispersion process ends once the particles have all stopped moving, i.e. at the first step at which each vertex is occupied by at most one particle. For the complete graph $K_n$ and star graph $S_n$, we show that for any constant $\delta>1$, with high probability, if $M \le n/2(1-\delta)$, then the process finishes in $O(\log n)$ steps, whereas if $M \ge n/2(1+\delta)$, then the process needs $e{\Omega(n)}$ steps to complete (if ever). We also show that an analogous lazy variant of the process exhibits the same behaviour but for higher thresholds, allowing faster dispersion of more particles. For paths, trees, grids, hypercubes and Cayley graphs of large enough sizes (in terms of $M$) we give bounds on the time to finish and the maximum distance traveled from the origin as a function of the number of particles $M$.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.