Papers
Topics
Authors
Recent
2000 character limit reached

Multiple Adaptive Bayesian Linear Regression for Scalable Bayesian Optimization with Warm Start (1712.02902v1)

Published 8 Dec 2017 in stat.ML

Abstract: Bayesian optimization (BO) is a model-based approach for gradient-free black-box function optimization. Typically, BO is powered by a Gaussian process (GP), whose algorithmic complexity is cubic in the number of evaluations. Hence, GP-based BO cannot leverage large amounts of past or related function evaluations, for example, to warm start the BO procedure. We develop a multiple adaptive Bayesian linear regression model as a scalable alternative whose complexity is linear in the number of observations. The multiple Bayesian linear regression models are coupled through a shared feedforward neural network, which learns a joint representation and transfers knowledge across machine learning problems.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.