Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

End-to-End Offline Goal-Oriented Dialog Policy Learning via Policy Gradient (1712.02838v1)

Published 7 Dec 2017 in cs.AI, cs.CL, and cs.LG

Abstract: Learning a goal-oriented dialog policy is generally performed offline with supervised learning algorithms or online with reinforcement learning (RL). Additionally, as companies accumulate massive quantities of dialog transcripts between customers and trained human agents, encoder-decoder methods have gained popularity as agent utterances can be directly treated as supervision without the need for utterance-level annotations. However, one potential drawback of such approaches is that they myopically generate the next agent utterance without regard for dialog-level considerations. To resolve this concern, this paper describes an offline RL method for learning from unannotated corpora that can optimize a goal-oriented policy at both the utterance and dialog level. We introduce a novel reward function and use both on-policy and off-policy policy gradient to learn a policy offline without requiring online user interaction or an explicit state space definition.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.