Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Colouring $(2P_2,H)$-Free and $(P_5,H)$-Free Graphs (1712.02447v1)

Published 6 Dec 2017 in cs.CC, cs.DS, and math.CO

Abstract: The Colouring problem asks whether the vertices of a graph can be coloured with at most $k$ colours for a given integer $k$ in such a way that no two adjacent vertices receive the same colour. A graph is $(H_1,H_2)$-free if it has no induced subgraph isomorphic to $H_1$ or $H_2$. A connected graph $H_1$ is almost classified if Colouring on $(H_1,H_2)$-free graphs is known to be polynomial-time solvable or NP-complete for all but finitely many connected graphs $H_2$. We show that every connected graph $H_1$ apart from the claw $K_{1,3}$ and the $5$-vertex path $P_5$ is almost classified. We also prove a number of new hardness results for Colouring on $(2P_2,H)$-free graphs. This enables us to list all graphs $H$ for which the complexity of Colouring is open on $(2P_2,H)$-free graphs and all graphs $H$ for which the complexity of Colouring is open on $(P_5,H)$-free graphs. In fact we show that these two lists coincide. Moreover, we show that the complexities of Colouring for $(2P_2,H)$-free graphs and for $(P_5,H)$-free graphs are the same for all known cases.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.