Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DCT-domain Deep Convolutional Neural Networks for Multiple JPEG Compression Classification (1712.02313v1)

Published 6 Dec 2017 in cs.MM

Abstract: With the rapid advancements in digital imaging systems and networking, low-cost hand-held image capture devices equipped with network connectivity are becoming ubiquitous. This ease of digital image capture and sharing is also accompanied by widespread usage of user-friendly image editing software. Thus, we are in an era where digital images can be very easily used for the massive spread of false information and their integrity need to be seriously questioned. Application of multiple lossy compressions on images is an essential part of any image editing pipeline involving lossy compressed images. This paper aims to address the problem of classifying images based on the number of JPEG compressions they have undergone, by utilizing deep convolutional neural networks in DCT domain. The proposed system incorporates a well designed pre-processing step before feeding the image data to CNN to capture essential characteristics of compression artifacts and make the system image content independent. Detailed experiments are performed to optimize different aspects of the system, such as depth of CNN, number of DCT frequencies, and execution time. Results on the standard UCID dataset demonstrate that the proposed system outperforms existing systems for multiple JPEG compression detection and is capable of classifying more number of re-compression cycles then existing systems.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube