Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Attention based convolutional neural network for predicting RNA-protein binding sites (1712.02270v1)

Published 6 Dec 2017 in q-bio.GN, cs.LG, and stat.ML

Abstract: RNA-binding proteins (RBPs) play crucial roles in many biological processes, e.g. gene regulation. Computational identification of RBP binding sites on RNAs are urgently needed. In particular, RBPs bind to RNAs by recognizing sequence motifs. Thus, fast locating those motifs on RNA sequences is crucial and time-efficient for determining whether the RNAs interact with the RBPs or not. In this study, we present an attention based convolutional neural network, iDeepA, to predict RNA-protein binding sites from raw RNA sequences. We first encode RNA sequences into one-hot encoding. Next, we design a deep learning model with a convolutional neural network (CNN) and an attention mechanism, which automatically search for important positions, e.g. binding motifs, to learn discriminant high-level features for predicting RBP binding sites. We evaluate iDeepA on publicly gold-standard RBP binding sites derived from CLIP-seq data. The results demonstrate iDeepA achieves comparable performance with other state-of-the-art methods.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)