Papers
Topics
Authors
Recent
Search
2000 character limit reached

LocNet: Global localization in 3D point clouds for mobile vehicles

Published 6 Dec 2017 in cs.RO and cs.LG | (1712.02165v2)

Abstract: Global localization in 3D point clouds is a challenging problem of estimating the pose of vehicles without any prior knowledge. In this paper, a solution to this problem is presented by achieving place recognition and metric pose estimation in the global prior map. Specifically, we present a semi-handcrafted representation learning method for LiDAR point clouds using siamese LocNets, which states the place recognition problem to a similarity modeling problem. With the final learned representations by LocNet, a global localization framework with range-only observations is proposed. To demonstrate the performance and effectiveness of our global localization system, KITTI dataset is employed for comparison with other algorithms, and also on our long-time multi-session datasets for evaluation. The result shows that our system can achieve high accuracy.

Citations (92)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.