Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A High-resolution DOA Estimation Method with a Family of Nonconvex Penalties (1712.01994v1)

Published 6 Dec 2017 in cs.IT and math.IT

Abstract: The low-rank matrix reconstruction (LRMR) approach is widely used in direction-of-arrival (DOA) estimation. As the rank norm penalty in an LRMR is NP-hard to compute, the nuclear norm (or the trace norm for a positive semidefinite (PSD) matrix) has been often employed as a convex relaxation of the rank norm. However, solving a nuclear norm convex problem may lead to a suboptimal solution of the original rank norm problem. In this paper, we propose to apply a family of nonconvex penalties on the singular values of the covariance matrix as the sparsity metrics to approximate the rank norm. In particular, we formulate a nonconvex minimization problem and solve it by using a locally convergent iterative reweighted strategy in order to enhance the sparsity and resolution. The problem in each iteration is convex and hence can be solved by using the optimization toolbox. Convergence analysis shows that the new method is able to obtain a suboptimal solution. The connection between the proposed method and the sparse signal reconstruction (SSR) is explored showing that our method can be regarded as a sparsity-based method with the number of sampling grids approaching infinity. Two feasible implementation algorithms that are based on solving a duality problem and deducing a closed-form solution of the simplified problem are also provided for the convex problem at each iteration to expedite the convergence. Extensive simulation studies are conducted to show the superiority of the proposed methods.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.