Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Phase transition in the spiked random tensor with Rademacher prior (1712.01777v2)

Published 5 Dec 2017 in math.PR, cs.IT, math-ph, math.IT, math.MP, math.ST, and stat.TH

Abstract: We consider the problem of detecting a deformation from a symmetric Gaussian random $p$-tensor $(p\geq 3)$ with a rank-one spike sampled from the Rademacher prior. Recently in Lesieur et al. (2017), it was proved that there exists a critical threshold $\beta_p$ so that when the signal-to-noise ratio exceeds $\beta_p$, one can distinguish the spiked and unspiked tensors and weakly recover the prior via the minimal mean-square-error method. On the other side, Perry, Wein, and Bandeira (2017) proved that there exists a $\beta_p'<\beta_p$ such that any statistical hypothesis test can not distinguish these two tensors, in the sense that their total variation distance asymptotically vanishes, when the signa-to-noise ratio is less than $\beta_p'$. In this work, we show that $\beta_p$ is indeed the critical threshold that strictly separates the distinguishability and indistinguishability between the two tensors under the total variation distance. Our approach is based on a subtle analysis of the high temperature behavior of the pure $p$-spin model with Ising spin, arising initially from the field of spin glasses. In particular, we identify the signal-to-noise criticality $\beta_p$ as the critical temperature, distinguishing the high and low temperature behavior, of the Ising pure $p$-spin mean-field spin glass model.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.