Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data Dropout in Arbitrary Basis for Deep Network Regularization (1712.00891v2)

Published 4 Dec 2017 in cs.CV, cs.LG, and stat.ML

Abstract: An important problem in training deep networks with high capacity is to ensure that the trained network works well when presented with new inputs outside the training dataset. Dropout is an effective regularization technique to boost the network generalization in which a random subset of the elements of the given data and the extracted features are set to zero during the training process. In this paper, a new randomized regularization technique in which we withhold a random part of the data without necessarily turning off the neurons/data-elements is proposed. In the proposed method, of which the conventional dropout is shown to be a special case, random data dropout is performed in an arbitrary basis, hence the designation Generalized Dropout. We also present a framework whereby the proposed technique can be applied efficiently to convolutional neural networks. The presented numerical experiments demonstrate that the proposed technique yields notable performance gain. Generalized Dropout provides new insight into the idea of dropout, shows that we can achieve different performance gains by using different bases matrices, and opens up a new research question as of how to choose optimal bases matrices that achieve maximal performance gain.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.