Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Data Dropout in Arbitrary Basis for Deep Network Regularization (1712.00891v2)

Published 4 Dec 2017 in cs.CV, cs.LG, and stat.ML

Abstract: An important problem in training deep networks with high capacity is to ensure that the trained network works well when presented with new inputs outside the training dataset. Dropout is an effective regularization technique to boost the network generalization in which a random subset of the elements of the given data and the extracted features are set to zero during the training process. In this paper, a new randomized regularization technique in which we withhold a random part of the data without necessarily turning off the neurons/data-elements is proposed. In the proposed method, of which the conventional dropout is shown to be a special case, random data dropout is performed in an arbitrary basis, hence the designation Generalized Dropout. We also present a framework whereby the proposed technique can be applied efficiently to convolutional neural networks. The presented numerical experiments demonstrate that the proposed technique yields notable performance gain. Generalized Dropout provides new insight into the idea of dropout, shows that we can achieve different performance gains by using different bases matrices, and opens up a new research question as of how to choose optimal bases matrices that achieve maximal performance gain.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube