Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Complexity of Satisfiability in Non-Iterated and Iterated Probabilistic Logics (1712.00810v3)

Published 3 Dec 2017 in cs.LO and cs.CC

Abstract: Let L be some extension of classical propositional logic. The non-iterated probabilistic logic over L, is the logic PL that is defined by adding non-nested probabilistic operators in the language of L. For example in PL we can express a statement like "the probability of truthfulness of A is at 0.3" where A is a formula of L. The iterated probabilistic logic over L is the logic PPL, where the probabilistic operators may be iterated (nested). For example, in PPL we can express a statement like "this coin is counterfeit with probability 0.6". In this paper we investigate the influence of probabilistic operators in the complexity of satisfiability in PL and PPL. We obtain complexity bounds, for the aforementioned satisfiability problem, which are parameterized in the complexity of satisfiability of conjunctions of positive and negative formulas that have neither a probabilistic nor a classical operator as a top-connective. As an application of our results we obtain tight complexity bounds for the satisfiability problem in PL and PPL when L is classical propositional logic or justification logic.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)