Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Prior and Likelihood Choices for Bayesian Matrix Factorisation on Small Datasets (1712.00288v1)

Published 1 Dec 2017 in stat.ML

Abstract: In this paper, we study the effects of different prior and likelihood choices for Bayesian matrix factorisation, focusing on small datasets. These choices can greatly influence the predictive performance of the methods. We identify four groups of approaches: Gaussian-likelihood with real-valued priors, nonnegative priors, semi-nonnegative models, and finally Poisson-likelihood approaches. For each group we review several models from the literature, considering sixteen in total, and discuss the relations between different priors and matrix norms. We extensively compare these methods on eight real-world datasets across three application areas, giving both inter- and intra-group comparisons. We measure convergence runtime speed, cross-validation performance, sparse and noisy prediction performance, and model selection robustness. We offer several insights into the trade-offs between prior and likelihood choices for Bayesian matrix factorisation on small datasets - such as that Poisson models give poor predictions, and that nonnegative models are more constrained than real-valued ones.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.