Papers
Topics
Authors
Recent
2000 character limit reached

GANosaic: Mosaic Creation with Generative Texture Manifolds (1712.00269v1)

Published 1 Dec 2017 in cs.CV and stat.ML

Abstract: This paper presents a novel framework for generating texture mosaics with convolutional neural networks. Our method is called GANosaic and performs optimization in the latent noise space of a generative texture model, which allows the transformation of a content image into a mosaic exhibiting the visual properties of the underlying texture manifold. To represent that manifold, we use a state-of-the-art generative adversarial method for texture synthesis, which can learn expressive texture representations from data and produce mosaic images with very high resolution. This fully convolutional model generates smooth (without any visible borders) mosaic images which morph and blend different textures locally. In addition, we develop a new type of differentiable statistical regularization appropriate for optimization over the prior noise space of the PSGAN model.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.