Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A double competitive strategy based learning automata algorithm (1712.00222v1)

Published 1 Dec 2017 in cs.AI

Abstract: Learning Automata (LA) are considered as one of the most powerful tools in the field of reinforcement learning. The family of estimator algorithms is proposed to improve the convergence rate of LA and has made great achievements. However, the estimators perform poorly on estimating the reward probabilities of actions in the initial stage of the learning process of LA. In this situation, a lot of rewards would be added to the probabilities of non-optimal actions. Thus, a large number of extra iterations are needed to compensate for these wrong rewards. In order to improve the speed of convergence, we propose a new P-model absorbing learning automaton by utilizing a double competitive strategy which is designed for updating the action probability vector. In this way, the wrong rewards can be corrected instantly. Hence, the proposed Double Competitive Algorithm overcomes the drawbacks of existing estimator algorithms. A refined analysis is presented to show the $\epsilon-optimality$ of the proposed scheme. The extensive experimental results in benchmark environments demonstrate that our proposed learning automata perform more efficiently than the most classic LA $SE_{RI}$ and the current fastest LA $DGCPA{*}$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.