Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Calculating Semantic Similarity between Academic Articles using Topic Event and Ontology (1711.11508v1)

Published 30 Nov 2017 in cs.CL, cs.AI, and cs.IR

Abstract: Determining semantic similarity between academic documents is crucial to many tasks such as plagiarism detection, automatic technical survey and semantic search. Current studies mostly focus on semantic similarity between concepts, sentences and short text fragments. However, document-level semantic matching is still based on statistical information in surface level, neglecting article structures and global semantic meanings, which may cause the deviation in document understanding. In this paper, we focus on the document-level semantic similarity issue for academic literatures with a novel method. We represent academic articles with topic events that utilize multiple information profiles, such as research purposes, methodologies and domains to integrally describe the research work, and calculate the similarity between topic events based on the domain ontology to acquire the semantic similarity between articles. Experiments show that our approach achieves significant performance compared to state-of-the-art methods.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)