Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Extreme Dimension Reduction for Handling Covariate Shift (1711.10938v2)

Published 29 Nov 2017 in cs.LG, cs.AI, and stat.ML

Abstract: In the covariate shift learning scenario, the training and test covariate distributions differ, so that a predictor's average loss over the training and test distributions also differ. In this work, we explore the potential of extreme dimension reduction, i.e. to very low dimensions, in improving the performance of importance weighting methods for handling covariate shift, which fail in high dimensions due to potentially high train/test covariate divergence and the inability to accurately estimate the requisite density ratios. We first formulate and solve a problem optimizing over linear subspaces a combination of their predictive utility and train/test divergence within. Applying it to simulated and real data, we show extreme dimension reduction helps sometimes but not always, due to a bias introduced by dimension reduction.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.