Emergent Mind

Particle Optimization in Stochastic Gradient MCMC

(1711.10927)
Published Nov 29, 2017 in stat.ML

Abstract

Stochastic gradient Markov chain Monte Carlo (SG-MCMC) has been increasingly popular in Bayesian learning due to its ability to deal with large data. A standard SG-MCMC algorithm simulates samples from a discretized-time Markov chain to approximate a target distribution. However, the samples are typically highly correlated due to the sequential generation process, an undesired property in SG-MCMC. In contrary, Stein variational gradient descent (SVGD) directly optimizes a set of particles, and it is able to approximate a target distribution with much fewer samples. In this paper, we propose a novel method to directly optimize particles (or samples) in SG-MCMC from scratch. Specifically, we propose efficient methods to solve the corresponding Fokker-Planck equation on the space of probability distributions, whose solution (i.e., a distribution) is approximated by particles. Through our framework, we are able to show connections of SG-MCMC to SVGD, as well as the seemly unrelated generative-adversarial-net framework. Under certain relaxations, particle optimization in SG-MCMC can be interpreted as an extension of standard SVGD with momentum.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.