Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Particle Optimization in Stochastic Gradient MCMC (1711.10927v1)

Published 29 Nov 2017 in stat.ML

Abstract: Stochastic gradient Markov chain Monte Carlo (SG-MCMC) has been increasingly popular in Bayesian learning due to its ability to deal with large data. A standard SG-MCMC algorithm simulates samples from a discretized-time Markov chain to approximate a target distribution. However, the samples are typically highly correlated due to the sequential generation process, an undesired property in SG-MCMC. In contrary, Stein variational gradient descent (SVGD) directly optimizes a set of particles, and it is able to approximate a target distribution with much fewer samples. In this paper, we propose a novel method to directly optimize particles (or samples) in SG-MCMC from scratch. Specifically, we propose efficient methods to solve the corresponding Fokker-Planck equation on the space of probability distributions, whose solution (i.e., a distribution) is approximated by particles. Through our framework, we are able to show connections of SG-MCMC to SVGD, as well as the seemly unrelated generative-adversarial-net framework. Under certain relaxations, particle optimization in SG-MCMC can be interpreted as an extension of standard SVGD with momentum.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.