Papers
Topics
Authors
Recent
2000 character limit reached

(Biased) Majority Rule Cellular Automata

Published 24 Nov 2017 in cs.FL, cs.DS, and nlin.CG | (1711.10920v1)

Abstract: Consider a graph $G=(V,E)$ and a random initial vertex-coloring, where each vertex is blue independently with probability $p_{b}$, and red with probability $p_r=1-p_b$. In each step, all vertices change their current color synchronously to the most frequent color in their neighborhood and in case of a tie, a vertex conserves its current color; this model is called majority model. If in case of a tie a vertex always chooses blue color, it is called biased majority model. We are interested in the behavior of these deterministic processes, especially in a two-dimensional torus (i.e., cellular automaton with (biased) majority rule). In the present paper, as a main result we prove both majority and biased majority cellular automata exhibit a threshold behavior with two phase transitions. More precisely, it is shown that for a two-dimensional torus $T_{n,n}$, there are two thresholds $0\leq p_1, p_2\leq 1$ such that $p_b \ll p_1$, $p_1 \ll p_b \ll p_2$, and $p_2 \ll p_b$ result in monochromatic configuration by red, stable coexistence of both colors, and monochromatic configuration by blue, respectively in $\mathcal{O}(n2)$ number of steps

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.