Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semi-Supervised and Active Few-Shot Learning with Prototypical Networks (1711.10856v2)

Published 29 Nov 2017 in cs.LG and stat.ML

Abstract: We consider the problem of semi-supervised few-shot classification where a classifier needs to adapt to new tasks using a few labeled examples and (potentially many) unlabeled examples. We propose a clustering approach to the problem. The features extracted with Prototypical Networks are clustered using $K$-means with the few labeled examples guiding the clustering process. We note that in many real-world applications the adaptation performance can be significantly improved by requesting the few labels through user feedback. We demonstrate good performance of the active adaptation strategy using image data.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.