Papers
Topics
Authors
Recent
2000 character limit reached

DS*: Tighter Lifting-Free Convex Relaxations for Quadratic Matching Problems

Published 29 Nov 2017 in math.OC, cs.CV, and stat.ML | (1711.10733v2)

Abstract: In this work we study convex relaxations of quadratic optimisation problems over permutation matrices. While existing semidefinite programming approaches can achieve remarkably tight relaxations, they have the strong disadvantage that they lift the original $n {\times} n$-dimensional variable to an $n2 {\times} n2$-dimensional variable, which limits their practical applicability. In contrast, here we present a lifting-free convex relaxation that is provably at least as tight as existing (lifting-free) convex relaxations. We demonstrate experimentally that our approach is superior to existing convex and non-convex methods for various problems, including image arrangement and multi-graph matching.

Citations (42)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.