Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Providing theoretical learning guarantees to Deep Learning Networks (1711.10292v1)

Published 28 Nov 2017 in cs.LG

Abstract: Deep Learning (DL) is one of the most common subjects when Machine Learning and Data Science approaches are considered. There are clearly two movements related to DL: the first aggregates researchers in quest to outperform other algorithms from literature, trying to win contests by considering often small decreases in the empirical risk; and the second investigates overfitting evidences, questioning the learning capabilities of DL classifiers. Motivated by such opposed points of view, this paper employs the Statistical Learning Theory (SLT) to study the convergence of Deep Neural Networks, with particular interest in Convolutional Neural Networks. In order to draw theoretical conclusions, we propose an approach to estimate the Shattering coefficient of those classification algorithms, providing a lower bound for the complexity of their space of admissible functions, a.k.a. algorithm bias. Based on such estimator, we generalize the complexity of network biases, and, next, we study AlexNet and VGG16 architectures in the point of view of their Shattering coefficients, and number of training examples required to provide theoretical learning guarantees. From our theoretical formulation, we show the conditions which Deep Neural Networks learn as well as point out another issue: DL benchmarks may be strictly driven by empirical risks, disregarding the complexity of algorithms biases.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube