Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

TRPL+K: Thick-Restart Preconditioned Lanczos+K Method for Large Symmetric Eigenvalue Problems (1711.10128v2)

Published 28 Nov 2017 in math.NA, cs.MS, and cs.NA

Abstract: The Lanczos method is one of the standard approaches for computing a few eigenpairs of a large, sparse, symmetric matrix. It is typically used with restarting to avoid unbounded growth of memory and computational requirements. Thick-restart Lanczos is a popular restarted variant because of its simplicity and numerically robustness. However, convergence can be slow for highly clustered eigenvalues so more effective restarting techniques and the use of preconditioning is needed. In this paper, we present a thick-restart preconditioned Lanczos method, TRPL+K, that combines the power of locally optimal restarting (+K) and preconditioning techniques with the efficiency of the thick-restart Lanczos method. TRPL+K employs an inner-outer scheme where the inner loop applies Lanczos on a preconditioned operator while the outer loop augments the resulting Lanczos subspace with certain vectors from the previous restart cycle to obtain eigenvector approximations with which it thick restarts the outer subspace. We first identify the differences from various relevant methods in the literature. Then, based on an optimization perspective, we show an asymptotic global quasi-optimality of a simplified TRPL+K method compared to an unrestarted global optimal method. Finally, we present extensive experiments showing that TRPL+K either outperforms or matches other state-of-the-art eigenmethods in both matrix-vector multiplications and computational time.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.