Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Homomorphic Parameter Compression for Distributed Deep Learning Training (1711.10123v1)

Published 28 Nov 2017 in cs.DC, cs.AI, and cs.LG

Abstract: Distributed training of deep neural networks has received significant research interest, and its major approaches include implementations on multiple GPUs and clusters. Parallelization can dramatically improve the efficiency of training deep and complicated models with large-scale data. A fundamental barrier against the speedup of DNN training, however, is the trade-off between computation and communication time. In other words, increasing the number of worker nodes decreases the time consumed in computation while simultaneously increasing communication overhead under constrained network bandwidth, especially in commodity hardware environments. To alleviate this trade-off, we suggest the idea of homomorphic parameter compression, which compresses parameters with the least expense and trains the DNN with the compressed representation. Although the specific method is yet to be discovered, we demonstrate that there is a high probability that the homomorphism can reduce the communication overhead, thanks to little compression and decompression times. We also provide theoretical speedup of homomorphic compression.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.