Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data Dependent Kernel Approximation using Pseudo Random Fourier Features (1711.09783v1)

Published 27 Nov 2017 in cs.LG and stat.ML

Abstract: Kernel methods are powerful and flexible approach to solve many problems in machine learning. Due to the pairwise evaluations in kernel methods, the complexity of kernel computation grows as the data size increases; thus the applicability of kernel methods is limited for large scale datasets. Random Fourier Features (RFF) has been proposed to scale the kernel method for solving large scale datasets by approximating kernel function using randomized Fourier features. While this method proved very popular, still it exists shortcomings to be effectively used. As RFF samples the randomized features from a distribution independent of training data, it requires sufficient large number of feature expansions to have similar performances to kernelized classifiers, and this is proportional to the number samples in the dataset. Thus, reducing the number of feature dimensions is necessary to effectively scale to large datasets. In this paper, we propose a kernel approximation method in a data dependent way, coined as Pseudo Random Fourier Features (PRFF) for reducing the number of feature dimensions and also to improve the prediction performance. The proposed approach is evaluated on classification and regression problems and compared with the RFF, orthogonal random features and Nystr{\"o}m approach

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.