Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

GazeGAN - Unpaired Adversarial Image Generation for Gaze Estimation (1711.09767v1)

Published 27 Nov 2017 in cs.CV, cs.AI, and cs.HC

Abstract: Recent research has demonstrated the ability to estimate gaze on mobile devices by performing inference on the image from the phone's front-facing camera, and without requiring specialized hardware. While this offers wide potential applications such as in human-computer interaction, medical diagnosis and accessibility (e.g., hands free gaze as input for patients with motor disorders), current methods are limited as they rely on collecting data from real users, which is a tedious and expensive process that is hard to scale across devices. There have been some attempts to synthesize eye region data using 3D models that can simulate various head poses and camera settings, however these lack in realism. In this paper, we improve upon a recently suggested method, and propose a generative adversarial framework to generate a large dataset of high resolution colorful images with high diversity (e.g., in subjects, head pose, camera settings) and realism, while simultaneously preserving the accuracy of gaze labels. The proposed approach operates on extended regions of the eye, and even completes missing parts of the image. Using this rich synthesized dataset, and without using any additional training data from real users, we demonstrate improvements over state-of-the-art for estimating 2D gaze position on mobile devices. We further demonstrate cross-device generalization of model performance, as well as improved robustness to diverse head pose, blur and distance.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube