Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Production Ready Chatbots: Generate if not Retrieve (1711.09684v1)

Published 27 Nov 2017 in cs.CL and cs.AI

Abstract: In this paper, we present a hybrid model that combines a neural conversational model and a rule-based graph dialogue system that assists users in scheduling reminders through a chat conversation. The graph based system has high precision and provides a grammatically accurate response but has a low recall. The neural conversation model can cater to a variety of requests, as it generates the responses word by word as opposed to using canned responses. The hybrid system shows significant improvements over the existing baseline system of rule based approach and caters to complex queries with a domain-restricted neural model. Restricting the conversation topic and combination of graph based retrieval system with a neural generative model makes the final system robust enough for a real world application.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.