Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hierarchical Spatial-aware Siamese Network for Thermal Infrared Object Tracking (1711.09539v2)

Published 27 Nov 2017 in cs.CV

Abstract: Most thermal infrared (TIR) tracking methods are discriminative, treating the tracking problem as a classification task. However, the objective of the classifier (label prediction) is not coupled to the objective of the tracker (location estimation). The classification task focuses on the between-class difference of the arbitrary objects, while the tracking task mainly deals with the within-class difference of the same objects. In this paper, we cast the TIR tracking problem as a similarity verification task, which is coupled well to the objective of the tracking task. We propose a TIR tracker via a Hierarchical Spatial-aware Siamese Convolutional Neural Network (CNN), named HSSNet. To obtain both spatial and semantic features of the TIR object, we design a Siamese CNN that coalesces the multiple hierarchical convolutional layers. Then, we propose a spatial-aware network to enhance the discriminative ability of the coalesced hierarchical feature. Subsequently, we train this network end to end on a large visible video detection dataset to learn the similarity between paired objects before we transfer the network into the TIR domain. Next, this pre-trained Siamese network is used to evaluate the similarity between the target template and target candidates. Finally, we locate the candidate that is most similar to the tracked target. Extensive experimental results on the benchmarks VOT-TIR 2015 and VOT-TIR 2016 show that our proposed method achieves favourable performance compared to the state-of-the-art methods.

Citations (112)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.