Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

One can hear the Euler characteristic of a simplicial complex (1711.09527v1)

Published 27 Nov 2017 in math.CO, cs.DM, and math.GN

Abstract: We prove that that the number p of positive eigenvalues of the connection Laplacian L of a finite abstract simplicial complex G matches the number b of even dimensional simplices in G and that the number n of negative eigenvalues matches the number f of odd-dimensional simplices in G. The Euler characteristic X(G) of G therefore can be spectrally described as X(G)=p-n. This is in contrast to the more classical Hodge Laplacian H which acts on the same Hilbert space, where X(G) is not yet known to be accessible from the spectrum of H. Given an ordering of G coming from a build-up as a CW complex, every simplex x in G is now associated to a unique eigenvector of L and the correspondence is computable. The Euler characteristic is now not only the potential energy summing over all g(x,y) with g=L{-1} but also agrees with a logarithmic energy tr(log(i L)) 2/(i pi) of the spectrum of L. We also give here examples of L-isospectral but non-isomorphic abstract finite simplicial complexes. One example shows that we can not hear the cohomology of the complex.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.