Clustering Semi-Random Mixtures of Gaussians (1711.08841v1)
Abstract: Gaussian mixture models (GMM) are the most widely used statistical model for the $k$-means clustering problem and form a popular framework for clustering in machine learning and data analysis. In this paper, we propose a natural semi-random model for $k$-means clustering that generalizes the Gaussian mixture model, and that we believe will be useful in identifying robust algorithms. In our model, a semi-random adversary is allowed to make arbitrary "monotone" or helpful changes to the data generated from the Gaussian mixture model. Our first contribution is a polynomial time algorithm that provably recovers the ground-truth up to small classification error w.h.p., assuming certain separation between the components. Perhaps surprisingly, the algorithm we analyze is the popular Lloyd's algorithm for $k$-means clustering that is the method-of-choice in practice. Our second result complements the upper bound by giving a nearly matching information-theoretic lower bound on the number of misclassified points incurred by any $k$-means clustering algorithm on the semi-random model.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.