Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Clustering Semi-Random Mixtures of Gaussians (1711.08841v1)

Published 23 Nov 2017 in cs.DS and cs.LG

Abstract: Gaussian mixture models (GMM) are the most widely used statistical model for the $k$-means clustering problem and form a popular framework for clustering in machine learning and data analysis. In this paper, we propose a natural semi-random model for $k$-means clustering that generalizes the Gaussian mixture model, and that we believe will be useful in identifying robust algorithms. In our model, a semi-random adversary is allowed to make arbitrary "monotone" or helpful changes to the data generated from the Gaussian mixture model. Our first contribution is a polynomial time algorithm that provably recovers the ground-truth up to small classification error w.h.p., assuming certain separation between the components. Perhaps surprisingly, the algorithm we analyze is the popular Lloyd's algorithm for $k$-means clustering that is the method-of-choice in practice. Our second result complements the upper bound by giving a nearly matching information-theoretic lower bound on the number of misclassified points incurred by any $k$-means clustering algorithm on the semi-random model.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.