Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Server, server in the cloud. Who is the fairest in the crowd? (1711.08801v1)

Published 23 Nov 2017 in cs.CY

Abstract: This paper follows the recent history of automated beauty competitions to discuss how machine learning techniques, in particular neural networks, alter the way attractiveness is handled and how this impacts the cultural landscape. We describe experiments performed to probe the behavior of two different convolutional neural network architectures in the classification of facial attractiveness in a large database of celebrity faces. As opposed to other easily definable facial features, attractiveness is difficult to detect robustly even for the best classification systems. Based on the observations from these experiments, we discuss several approaches to detect factors that come into play when a machine evaluates human features, and how bias can occur not only in data selection but in network architectures; in multiple forms on multiple levels throughout the process. The overall goal is to map out with mixed methods a novel condition: slippages produced by platform level machine learning systems that make judgements in domains considered dependent on high level human intelligence.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube