Papers
Topics
Authors
Recent
2000 character limit reached

Safer Classification by Synthesis (1711.08534v2)

Published 22 Nov 2017 in cs.LG, cs.AI, and stat.ML

Abstract: The discriminative approach to classification using deep neural networks has become the de-facto standard in various fields. Complementing recent reservations about safety against adversarial examples, we show that conventional discriminative methods can easily be fooled to provide incorrect labels with very high confidence to out of distribution examples. We posit that a generative approach is the natural remedy for this problem, and propose a method for classification using generative models. At training time, we learn a generative model for each class, while at test time, given an example to classify, we query each generator for its most similar generation, and select the class corresponding to the most similar one. Our approach is general and can be used with expressive models such as GANs and VAEs. At test time, our method accurately "knows when it does not know," and provides resilience to out of distribution examples while maintaining competitive performance for standard examples.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.