Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Decomposition Strategies for Constructive Preference Elicitation (1711.08247v2)

Published 22 Nov 2017 in stat.ML and cs.LG

Abstract: We tackle the problem of constructive preference elicitation, that is the problem of learning user preferences over very large decision problems, involving a combinatorial space of possible outcomes. In this setting, the suggested configuration is synthesized on-the-fly by solving a constrained optimization problem, while the preferences are learned itera tively by interacting with the user. Previous work has shown that Coactive Learning is a suitable method for learning user preferences in constructive scenarios. In Coactive Learning the user provides feedback to the algorithm in the form of an improvement to a suggested configuration. When the problem involves many decision variables and constraints, this type of interaction poses a significant cognitive burden on the user. We propose a decomposition technique for large preference-based decision problems relying exclusively on inference and feedback over partial configurations. This has the clear advantage of drastically reducing the user cognitive load. Additionally, part-wise inference can be (up to exponentially) less computationally demanding than inference over full configurations. We discuss the theoretical implications of working with parts and present promising empirical results on one synthetic and two realistic constructive problems.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.