Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Video Semantic Object Segmentation by Self-Adaptation of DCNN (1711.08180v1)

Published 22 Nov 2017 in cs.CV

Abstract: This paper proposes a new framework for semantic segmentation of objects in videos. We address the label inconsistency problem of deep convolutional neural networks (DCNNs) by exploiting the fact that videos have multiple frames; in a few frames the object is confidently-estimated (CE) and we use the information in them to improve labels of the other frames. Given the semantic segmentation results of each frame obtained from DCNN, we sample several CE frames to adapt the DCNN model to the input video by focusing on specific instances in the video rather than general objects in various circumstances. We propose offline and online approaches under different supervision levels. In experiments our method achieved great improvement over the original model and previous state-of-the-art methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.