Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Approximation Algorithms for Rectangle Packing Problems (PhD Thesis) (1711.07851v1)

Published 21 Nov 2017 in cs.DS

Abstract: In rectangle packing problems we are given the task of placing axis-aligned rectangles in a given plane region, so that they do not overlap with each other. In Maximum Weight Independent Set of Rectangles (MWISR), their position is given and we can only select which rectangles to choose, while trying to maximize their total weight. In Strip Packing (SP), we have to pack all the given rectangles in a rectangular region of fixed width, while minimizing its height. In 2-Dimensional Geometric Knapsack (2DGK), the target region is a square of a given size, and our goal is to select and pack a subset of the given rectangles of maximum weight. We study a generalization of MWISR and use it to improve the approximation for a resource allocation problem called bagUFP. We revisit some classical results on SP and 2DGK, by proposing a framework based on smaller containers that are packed with simpler rules; while variations of this scheme are indeed a standard technique in this area, we abstract away some of the problem-specific differences, obtaining simpler algorithms that work for different problems. We obtain improved approximations for SP in pseudo-polynomial time, and for a variant of 2DGK where one can to rotate the rectangles by 90{\deg}. For the latter, we propose the first algorithms with approximation factor better than 2. For the main variant of 2DGK (without rotations), a container-based approach seems to face a natural barrier of 2 in the approximation factor. Thus, we consider a generalized kind of packing that combines container packings with another packing problem that we call L-packing problem, where we have to pack rectangles in an L-shaped region of the plane. By finding a (1 + {\epsilon})-approximation for this problem and exploiting the combinatorial structure of 2DGK, we obtain the first algorithms that break the barrier of 2 for the approximation factor of this problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.