Papers
Topics
Authors
Recent
2000 character limit reached

Solution of network localization problem with noisy distances and its convergence (1711.07304v1)

Published 20 Nov 2017 in math.OC and cs.OH

Abstract: The network localization problem with convex and non-convex distance constraints may be modeled as a nonlinear optimization problem. The existing localization techniques are mainly based on convex optimization. In those techniques, the non-convex distance constraints are either ignored or relaxed into convex constraints for using the convex optimization methods like SDP, least square approximation, etc.. We propose a method to solve the nonlinear non-convex network localization problem with noisy distance measurements without any modification of constraints in the general model. We use the nonlinear Lagrangian technique for non-convex optimization to convert the problem to a root finding problem of a single variable continuous function. This problem is then solved using an iterative method. However, in each step of the iteration the computation of the functional value involves a finite mini-max problem (FMX). We use smoothing gradient method to fix the FMX problem. We also prove that the solution obtained from the proposed iterative method converges to the actual solution of the general localization problem. The proposed method obtains the solutions with a desired label of accuracy in real time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.