Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians (1711.07211v1)

Published 20 Nov 2017 in cs.DS, cs.CC, cs.IT, cs.LG, math.IT, math.ST, and stat.TH

Abstract: We study the problem of list-decodable Gaussian mean estimation and the related problem of learning mixtures of separated spherical Gaussians. We develop a set of techniques that yield new efficient algorithms with significantly improved guarantees for these problems. {\bf List-Decodable Mean Estimation.} Fix any $d \in \mathbb{Z}_+$ and $0< \alpha <1/2$. We design an algorithm with runtime $O (\mathrm{poly}(n/\alpha){d})$ that outputs a list of $O(1/\alpha)$ many candidate vectors such that with high probability one of the candidates is within $\ell_2$-distance $O(\alpha{-1/(2d)})$ from the true mean. The only previous algorithm for this problem achieved error $\tilde O(\alpha{-1/2})$ under second moment conditions. For $d = O(1/\epsilon)$, our algorithm runs in polynomial time and achieves error $O(\alpha{\epsilon})$. We also give a Statistical Query lower bound suggesting that the complexity of our algorithm is qualitatively close to best possible. {\bf Learning Mixtures of Spherical Gaussians.} We give a learning algorithm for mixtures of spherical Gaussians that succeeds under significantly weaker separation assumptions compared to prior work. For the prototypical case of a uniform mixture of $k$ identity covariance Gaussians we obtain: For any $\epsilon>0$, if the pairwise separation between the means is at least $\Omega(k{\epsilon}+\sqrt{\log(1/\delta)})$, our algorithm learns the unknown parameters within accuracy $\delta$ with sample complexity and running time $\mathrm{poly} (n, 1/\delta, (k/\epsilon){1/\epsilon})$. The previously best known polynomial time algorithm required separation at least $k{1/4} \mathrm{polylog}(k/\delta)$. Our main technical contribution is a new technique, using degree-$d$ multivariate polynomials, to remove outliers from high-dimensional datasets where the majority of the points are corrupted.

Citations (139)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.