Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compression-Based Regularization with an Application to Multi-Task Learning (1711.07099v1)

Published 19 Nov 2017 in stat.ML and cs.LG

Abstract: This paper investigates, from information theoretic grounds, a learning problem based on the principle that any regularity in a given dataset can be exploited to extract compact features from data, i.e., using fewer bits than needed to fully describe the data itself, in order to build meaningful representations of a relevant content (multiple labels). We begin by introducing the noisy lossy source coding paradigm with the log-loss fidelity criterion which provides the fundamental tradeoffs between the \emph{cross-entropy loss} (average risk) and the information rate of the features (model complexity). Our approach allows an information theoretic formulation of the \emph{multi-task learning} (MTL) problem which is a supervised learning framework in which the prediction models for several related tasks are learned jointly from common representations to achieve better generalization performance. Then, we present an iterative algorithm for computing the optimal tradeoffs and its global convergence is proven provided that some conditions hold. An important property of this algorithm is that it provides a natural safeguard against overfitting, because it minimizes the average risk taking into account a penalization induced by the model complexity. Remarkably, empirical results illustrate that there exists an optimal information rate minimizing the \emph{excess risk} which depends on the nature and the amount of available training data. An application to hierarchical text categorization is also investigated, extending previous works.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.