Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Kill Two Birds with One Stone: Weakly-Supervised Neural Network for Image Annotation and Tag Refinement (1711.06998v1)

Published 19 Nov 2017 in cs.CV

Abstract: The number of social images has exploded by the wide adoption of social networks, and people like to share their comments about them. These comments can be a description of the image, or some objects, attributes, scenes in it, which are normally used as the user-provided tags. However, it is well-known that user-provided tags are incomplete and imprecise to some extent. Directly using them can damage the performance of related applications, such as the image annotation and retrieval. In this paper, we propose to learn an image annotation model and refine the user-provided tags simultaneously in a weakly-supervised manner. The deep neural network is utilized as the image feature learning and backbone annotation model, while visual consistency, semantic dependency, and user-error sparsity are introduced as the constraints at the batch level to alleviate the tag noise. Therefore, our model is highly flexible and stable to handle large-scale image sets. Experimental results on two benchmark datasets indicate that our proposed model achieves the best performance compared to the state-of-the-art methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.