Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discover Your Competition in LTE: Client-Based Passive Data Rate Prediction by Machine Learning (1711.06820v2)

Published 18 Nov 2017 in cs.NI

Abstract: To receive the highest possible data rate or/and the most reliable connection, the User Equipment (UE) may want to choose between different networks. However, current LTE and LTE-Advanced mobile networks do not supply the UE with an explicit indicator about the currently achievable data rate. For this reason, the mobile device will only see what it obtains from the network once it actively sends data. A passive estimation in advance is therefore not doable without further effort. Although the device can identify its current radio conditions based on the received signal strength and quality, it has no information about the cell's traffic load caused by other users. To close this gap we present an Enhanced Client-based Control-Channel Analysis for Connectivity Estimation (EC3ACE), which uncovers the cell load broken down by each single user. Based on this information and in conjunction with existing indicators like Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ), a neural network is trained to perform a data rate prediction for the current LTE link. Compared to an earlier work, our approach reduces the average prediction error below one third. Applied in public networks, the predicted data rate differs by less than 1.5 Mbit/s in 93% of cases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Robert Falkenberg (13 papers)
  2. Karsten Heimann (3 papers)
  3. Christian Wietfeld (65 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.