Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An almost-linear time algorithm for uniform random spanning tree generation (1711.06455v1)

Published 17 Nov 2017 in cs.DS, cs.DM, and math.PR

Abstract: We give an $m{1+o(1)}\beta{o(1)}$-time algorithm for generating a uniformly random spanning tree in an undirected, weighted graph with max-to-min weight ratio $\beta$. We also give an $m{1+o(1)}\epsilon{-o(1)}$-time algorithm for generating a random spanning tree with total variation distance $\epsilon$ from the true uniform distribution. Our second algorithm's runtime does not depend on the edge weights. Our $m{1+o(1)}\beta{o(1)}$-time algorithm is the first almost-linear time algorithm for the problem --- even on unweighted graphs --- and is the first subquadratic time algorithm for sparse weighted graphs. Our algorithms improve on the random walk-based approach given in Kelner-M\k{a}dry and M\k{a}dry-Straszak-Tarnawski. We introduce a new way of using Laplacian solvers to shortcut a random walk. In order to fully exploit this shortcutting technique, we prove a number of new facts about electrical flows in graphs. These facts seek to better understand sets of vertices that are well-separated in the effective resistance metric in connection with Schur complements, concentration phenomena for electrical flows after conditioning on partial samples of a random spanning tree, and more.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)