Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Game Characterization of Probabilistic Bisimilarity, and Applications to Pushdown Automata (1711.06120v3)

Published 16 Nov 2017 in cs.LO and cs.FL

Abstract: We study the bisimilarity problem for probabilistic pushdown automata (pPDA) and subclasses thereof. Our definition of pPDA allows both probabilistic and non-deterministic branching, generalising the classical notion of pushdown automata (without epsilon-transitions). We first show a general characterization of probabilistic bisimilarity in terms of two-player games, which naturally reduces checking bisimilarity of probabilistic labelled transition systems to checking bisimilarity of standard (non-deterministic) labelled transition systems. This reduction can be easily implemented in the framework of pPDA, allowing to use known results for standard (non-probabilistic) PDA and their subclasses. A direct use of the reduction incurs an exponential increase of complexity, which does not matter in deriving decidability of bisimilarity for pPDA due to the non-elementary complexity of the problem. In the cases of probabilistic one-counter automata (pOCA), of probabilistic visibly pushdown automata (pvPDA), and of probabilistic basic process algebras (i.e., single-state pPDA) we show that an implicit use of the reduction can avoid the complexity increase; we thus get PSPACE, EXPTIME, and 2-EXPTIME upper bounds, respectively, like for the respective non-probabilistic versions. The bisimilarity problems for OCA and vPDA are known to have matching lower bounds (thus being PSPACE-complete and EXPTIME-complete, respectively); we show that these lower bounds also hold for fully probabilistic versions that do not use non-determinism.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.