Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Remedies against the Vocabulary Gap in Information Retrieval (1711.06004v1)

Published 16 Nov 2017 in cs.IR, cs.AI, and cs.CL

Abstract: Search engines rely heavily on term-based approaches that represent queries and documents as bags of words. Text---a document or a query---is represented by a bag of its words that ignores grammar and word order, but retains word frequency counts. When presented with a search query, the engine then ranks documents according to their relevance scores by computing, among other things, the matching degrees between query and document terms. While term-based approaches are intuitive and effective in practice, they are based on the hypothesis that documents that exactly contain the query terms are highly relevant regardless of query semantics. Inversely, term-based approaches assume documents that do not contain query terms as irrelevant. However, it is known that a high matching degree at the term level does not necessarily mean high relevance and, vice versa, documents that match null query terms may still be relevant. Consequently, there exists a vocabulary gap between queries and documents that occurs when both use different words to describe the same concepts. It is the alleviation of the effect brought forward by this vocabulary gap that is the topic of this dissertation. More specifically, we propose (1) methods to formulate an effective query from complex textual structures and (2) latent vector space models that circumvent the vocabulary gap in information retrieval.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube