Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Packing nearly optimal Ramsey R(3,t) graphs (1711.05877v1)

Published 16 Nov 2017 in math.CO, cs.DM, and math.PR

Abstract: In 1995 Kim famously proved the Ramsey bound R(3,t) \ge c t2/\log t by constructing an n-vertex graph that is triangle-free and has independence number at most C \sqrt{n \log n}. We extend this celebrated result, which is best possible up to the value of the constants, by approximately decomposing the complete graph K_n into a packing of such nearly optimal Ramsey R(3,t) graphs. More precisely, for any \epsilon>0 we find an edge-disjoint collection (G_i)i of n-vertex graphs G_i \subseteq K_n such that (a) each G_i is triangle-free and has independence number at most C\epsilon \sqrt{n \log n}, and (b) the union of all the G_i contains at least (1-\epsilon)\binom{n}{2} edges. Our algorithmic proof proceeds by sequentially choosing the graphs G_i via a semi-random (i.e., Rodl nibble type) variation of the triangle-free process. As an application, we prove a conjecture in Ramsey theory by Fox, Grinshpun, Liebenau, Person, and Szabo (concerning a Ramsey-type parameter introduced by Burr, Erdos, Lovasz in 1976). Namely, denoting by s_r(H) the smallest minimum degree of r-Ramsey minimal graphs for H, we close the existing logarithmic gap for H=K_3 and establish that s_r(K_3) = \Theta(r2 \log r).

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.