Papers
Topics
Authors
Recent
2000 character limit reached

Lattice Rescoring Strategies for Long Short Term Memory Language Models in Speech Recognition (1711.05448v1)

Published 15 Nov 2017 in stat.ML, cs.CL, and cs.LG

Abstract: Recurrent neural network (RNN) LMs and Long Short Term Memory (LSTM) LMs, a variant of RNN LMs, have been shown to outperform traditional N-gram LMs on speech recognition tasks. However, these models are computationally more expensive than N-gram LMs for decoding, and thus, challenging to integrate into speech recognizers. Recent research has proposed the use of lattice-rescoring algorithms using RNNLMs and LSTMLMs as an efficient strategy to integrate these models into a speech recognition system. In this paper, we evaluate existing lattice rescoring algorithms along with new variants on a YouTube speech recognition task. Lattice rescoring using LSTMLMs reduces the word error rate (WER) for this task by 8\% relative to the WER obtained using an N-gram LM.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.