Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unified Approach to Convex Robust Distributed Control given Arbitrary Information Structures (1711.05324v3)

Published 14 Nov 2017 in cs.SY, eess.SY, and math.OC

Abstract: We consider the problem of computing optimal linear control policies for linear systems in finite-horizon. The states and the inputs are required to remain inside pre-specified safety sets at all times despite unknown disturbances. In this technical note, we focus on the requirement that the control policy is distributed, in the sense that it can only be based on partial information about the history of the outputs. It is well-known that when a condition denoted as Quadratic Invariance (QI) holds, the optimal distributed control policy can be computed in a tractable way. Our goal is to unify and generalize the class of information structures over which quadratic invariance is equivalent to a test over finitely many binary matrices. The test we propose certifies convexity of the output-feedback distributed control problem in finite-horizon given any arbitrarily defined information structure, including the case of time varying communication networks and forgetting mechanisms. Furthermore, the framework we consider allows for including polytopic constraints on the states and the inputs in a natural way, without affecting convexity.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.