Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Alpha-Divergences in Variational Dropout (1711.04345v1)

Published 12 Nov 2017 in stat.ML and cs.LG

Abstract: We investigate the use of alternative divergences to Kullback-Leibler (KL) in variational inference(VI), based on the Variational Dropout \cite{kingma2015}. Stochastic gradient variational Bayes (SGVB) \cite{aevb} is a general framework for estimating the evidence lower bound (ELBO) in Variational Bayes. In this work, we extend the SGVB estimator with using Alpha-Divergences, which are alternative to divergences to VI' KL objective. The Gaussian dropout can be seen as a local reparametrization trick of the SGVB objective. We extend the Variational Dropout to use alpha divergences for variational inference. Our results compare $\alpha$-divergence variational dropout with standard variational dropout with correlated and uncorrelated weight noise. We show that the $\alpha$-divergence with $\alpha \rightarrow 1$ (or KL divergence) is still a good measure for use in variational inference, in spite of the efficient use of Alpha-divergences for Dropout VI \cite{Li17}. $\alpha \rightarrow 1$ can yield the lowest training error, and optimizes a good lower bound for the evidence lower bound (ELBO) among all values of the parameter $\alpha \in [0,\infty)$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube