Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Sequence-Based Mesh Classifier for the Prediction of Protein-Protein Interactions (1711.04294v1)

Published 12 Nov 2017 in stat.ML and q-bio.MN

Abstract: The worldwide surge of multiresistant microbial strains has propelled the search for alternative treatment options. The study of Protein-Protein Interactions (PPIs) has been a cornerstone in the clarification of complex physiological and pathogenic processes, thus being a priority for the identification of vital components and mechanisms in pathogens. Despite the advances of laboratorial techniques, computational models allow the screening of protein interactions between entire proteomes in a fast and inexpensive manner. Here, we present a supervised machine learning model for the prediction of PPIs based on the protein sequence. We cluster amino acids regarding their physicochemical properties, and use the discrete cosine transform to represent protein sequences. A mesh of classifiers was constructed to create hyper-specialised classifiers dedicated to the most relevant pairs of molecular function annotations from Gene Ontology. Based on an exhaustive evaluation that includes datasets with different configurations, cross-validation and out-of-sampling validation, the obtained results outscore the state-of-the-art for sequence-based methods. For the final mesh model using SVM with RBF, a consistent average AUC of 0.84 was attained.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.